x(.5x^2+9.27*10^-6)=1.1567*10^-7

Simple and best practice solution for x(.5x^2+9.27*10^-6)=1.1567*10^-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(.5x^2+9.27*10^-6)=1.1567*10^-7 equation:



x(.5x^2+9.27*10^-6)=1.1567*10^-7
We move all terms to the left:
x(.5x^2+9.27*10^-6)-(1.1567*10^-7)=0
We add all the numbers together, and all the variables
x(.5x^2+9.27*10^-6)-7-1.1567E=0
We multiply parentheses
x^2+92.7x^2-6x-7-1.1567E=0
We add all the numbers together, and all the variables
93.7x^2-6x-10.144236590979=0
a = 93.7; b = -6; c = -10.144236590979;
Δ = b2-4ac
Δ = -62-4·93.7·(-10.144236590979)
Δ = 3838.0598742989
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-\sqrt{3838.0598742989}}{2*93.7}=\frac{6-\sqrt{3838.0598742989}}{187.4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+\sqrt{3838.0598742989}}{2*93.7}=\frac{6+\sqrt{3838.0598742989}}{187.4} $

See similar equations:

| x(.5x^2+9.27*10^-6)=1.1567X10^-7 | | 0.5(x+20)=1/4x-5 | | -6(7+4r)=16 | | 5x^2+100x+9=0 | | -3x+7=-86 | | 245000+350x=3000000 | | x-6.8(x-2)=10 | | X/6+14=21x | | 4(n*5)=3(2n+10) | | 44-10x=16+4x | | 345000=25200-2x | | 10.31=p/3.4+5.09 | | 98-y=258 | | 25200-2x=345000 | | 50=198-y | | Y=7/3x+50 | | 4x+5=x+8 | | 4(6x-9.5)=36. | | 12×m=180 | | 1/5x+5=x-7 | | 6x14=3x+6 | | -4w/7=-8 | | -5x=15/7 | | 3X+y=185 | | 6x+54=68 | | x³-3x=37 | | 2/3(x+9)=4 | | -w+23=35 | | 24/v=6 | | -7x+2x+10=18 | | 37=3x+8 | | 24=6/7u |

Equations solver categories